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ABSTRACT

In recent years, avionics systems development costs have become the driving factor in the
development of space systems, military aircraft, and commercial aircraft.

A method of reducing avionics development costs is to utilize state-of-the-art software
application generator (autocode) tools and methods. The recent maturity of application
generator technology has the potential to dramatically reduce development costs by eliminating
software development steps that have historically introduced errors and the need for re-work.

Application generator tools have been demonstrated to be an effective method for autocoding
non-redundant, relatively low-rate input/output (I/O) applications on the Space Station Freedom
(SSF) program; however, they have not been demonstrated for fault tolerant, high-rate I/O,
flight critical environments. This contract will evaluate the use of application generators in
these harsh environments.

Using Boeing's quad-redundant avionics system controller as the target system, Space Shuttle
Guidance, Navigation, and Control (GN&C) software will be autocoded, tested, and evaluated
in the Johnson [Space Center] Avionics Engineering Laboratory (JAEL). The response of the
autocoded system will be shown to match the response of the existing Shuttle General Purpose
Computers (GPCs), thereby demonstrating the viability of using autocode techniques in the
development of future avionics systems.
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DEFINITIONS

EG

EG

NASA JSCinternalcodefor theEngineeringDirectorate'sNavigationControland
AeronauticsDivision(NCAD)

NASA JSCinternalcodefor theEngineeringDirectorate'sFlightDataSystems
Division (FDSD)

ACRONYMS, ABBREVIATIONS, AND SYMBOLS

ASC
CAD
Comm.
COTS
DAP
ETDM
FSSR
HOL
//o
ISI
JAEL
JSC
MB
NASA
RSEL
SVM
SOW
VHM

Avionics System Controller
Computer Aided Design
Communication
Commercial Off-the-Shelf

Digital Autopilot
Embedded Target Debug Monitor
Functional System Software Requirements
High-Order Language
Input/Output
Integrated Systems Incorporated
JSC Avionics Evaluation Laboratory
Johnson Space Center
Megabyte(s)
National Aeronautics and Space Administration
Real-time System Engineering Laboratory
Sync and Voter Module
Statement of Work

Vehicle Health Monitoring
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1. INTRODUCTION

This report documentsthework performedon NASA researchcontractNAS9-18878,Task
3.2.2. Under this task Boeing delivered (on a loan-in basis) and demonstrated a state-of-the-
art quad redundant controller compliant with open systems interface standards and commercial
development tools. As part of this task the NASA/Boeing team demonstrated the compatibility
of the fault tolerant system with automatic "spec-to-code" generated software. In recent years
industry has matured and made available computer aided design (CAD) tools that enable control
algorithm specification pictorially, using block diagrams. From this block diagram
representation, the tools can automatically generate High Order Language (HOL) software.
The goal on this project was to execute autocoded Ada software in Boeing's fault tolerant target
system with minimal modifications to the autocoded software. In areas where modifications to
the autocode were required recommendations were given and are documented here.

This work represents one piece of an overall development process that features a high degree of
automation and enables rapid prototype and development of entire avionics systems.

1.1 Objective

The multi-year objective is to develop, test and demonstrate a highly automated process suitable
for future avionics systems development. This process will span from requirements definition
and systems design tasks to detailed hardware/software design, integration, and verification
tasks. Successful development of this process (and the infrastructure of tools needed to
implement the process) will result in substantial reductions in development and test costs as
well as compression of project schedules. Reduction estimates approach 50 percent for cost
and schedule compression.

1.2 Multi-year Approach

The multi-year task flow is shown in figure 1.2-1. A graduated build-up of capability and
maturity in the new process is achieved that culminates in flight demonstration testing and
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Figure 1.2-1 Multi-Year Approach

eventual full-scale application. Phase 1 completion is shown as shaded in the figure. In phase
2 the autocoding process in conjunction with the standardized fault tolerant system will be
subjected to more rigorous testing in the Johnson Avionics Evaluation Lab (JAEL). Closed-
Loop simulations will be developed and tested using Space Shuttle ascent flight control as the
first application. Also in phase 2, other avionics areas will be investigated for development
automation including: Vehicle Health Monitoring (VHM), Guidance, Navigation, and
Communications. In phase 3, the rapid prototyping process and tools, along with the standard
fault tolerant system, will be finalized and verified. The process will be applied to actual flight
testing demonstrations and areas other than Shuttle flight will be explored to ensure the
universal applicability of the new rapid prototyping process.

1.3 Phase 1 Overview

Figure 1.3-1 shows a simplified view of the development process required to achieve
hardware-in-the-loop simulations. As shown in the figure, the phase 1 efforts focused on the
shaded portion of the process. The significant aspect of the process depicted in figure 1.3-1 is
that the product from the algorithm development stage is not a detailed software development
specification (or functional system software requirements (FSSR) document). Instead, the
product from that stage is automatically generated HOL software that, with minor
modifications, can execute on a flight processor target system.
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Figure 1.3-1 Development Process Summary

The goal of the phase 1 effort was to execute autocoded Ada software in Boeing's fault tolerant
voting system with minimal hand modifications to the autocoded software. Areas where hand
modifications were needed were identified and recommendations to address these areas given.

For this effort the Space Shuttle Digital Autopilot (DAP) control algorithm was used as a

representative application. The NASA EG group had previously specified the DAP using
autocode techniques and tools supplied by Integrated Systems Incorporated (ISI). NASA EK
and Boeing personnel then transformed the autocoded software to a version compatible with
the Boeing fault tolerant avionics system controller (ASC). This manual translation involved
minor modifications and a working version was complete in less than one week. The
translated code was then ported to the Boeing system and executed in a standalone, real-time
simulation. All inputs and outputs to the DAP software were voted using the Boeing Voter
Module and stored in ASC local memory. This allowed for post-simulation analysis and
verification. It was shown that the ASC was capable of executing the DAP in a multi-channel

synchronous configuration. It was also demonstrated that the ASC fault tolerant characteristics
did not impinge on the autocoding process. All manual translation steps that were made would
be required for execution on any real-time target.

In preparation for future closed-loop simulations in the JAEL, the NASA / Boeing team
integrated the ASC with a simulated avionics subsystem. The subsystem was simulated by a
personal computer and linked to the ASC as a remote terminal via a MIL-STD-1553B bus.
DAP inputs and outputs were passed over the bus and voted at the boundary of the ASC. This
is a key stepping stone to the phase 2 closed-loop simulation work.

Page 7



2. PHASE 1 TEST REPORT

This section of the report documents phase 1 progress made in the JSC Real-time System
Engineering Laboratory (RSEL). For this effort Boeing placed its fault tolerant avionics

system controller (ASC) in the RSEL and the NASA/Boeing team worked jointly over a six
week period on the tasks described here. Section 2.1 describes the detailed process necessary
to generate, load, and test autocoded software on the Boeing target. Section 2.2 describes
progress made on standalone execution of the Shuttle DAP on the target. Finally, section 2.3
describes progress made in preparation for closed-loop simulation in the JAEL.

2.1 Standalone Development Process

A detailed view of the process required to generate autocoded software and execute it on the
Boeing target is shown in figure 2.1-1 and described here.

_lln 1

_mulodan J

(ASC)
(a) E_et . r

_puttWnm P_

Figure 2.1-1 Standalone Developmem Process

QUAD REDUNDANT TARGET
AVIONICS SYSTEM CONTROLLER

The first step uses ISI's MatrixX build and simulation tools to develop a model file. The
model f'de is an ASCII file that describes the pictorial representation of the control algorithm
being developed--in this case the Shuttle DAP. Generation of the model file was performed
by NASA personnel.

In the second step of figure 2.1-1 the model file and the ISI provided template file axe input to
the autocode generator to produce awAda source code f'fle automatically. The template file
contains key elements such as the ISI provided task scheduler. This is a simple rate-monotonic
scheduler capable of scheduling and dispatching multi-rate periodic tasks as well as triggered,
or asynchronous, tasks. Appendix D contains a full listing of the Ada source code generated

from combining the DAP model and the template f'de elements, including the scheduler 1.

The Ada source file is then combined whh a host version of the ISI provided utilities fide (bl in
figure 2.1-1) and compiled to generate an executable module (step 3). The utilities file contains

1Note that the DAP was constructed as a single 25 Hz task. Future versions will update the DAP to run
multiple rates including 12.5 and 6.25 Hz tasks.
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platform specific functions including external I/O. The external I/O functions move data
between the autocode internal data structures and external I/O elements. This is platform

specific and usually requires one-time modifications.

In step 4 the executable module runs on the host development station to generate a host
simulation output file. This output is then verified against original simulation runs from within
the Matrix-X simulation tools to ensure validity. The above steps also create an input file to be

used in later steps.

In the fifth step the Ada source code and a second version (b2) of the ISI provided utilities file
are compiled and linked using Verdix Ada development tools. Appendix E contains a complete
listing of the utilities file. The module produced can then be loaded on the Boeing target for
execution.

In the sixth step the executable code and input file are loaded onto the ASC target and executed
in real-time. The simulation run on the target produces an output file that is uploaded to the

host system for comparison to the simulation output file.

The goal of the above process is to enable rapid development of control systems using block
diagram level specifications. The template file and utilities file are intented to be modified one
time only to meet user needs. Theoretically, once those files are set, the process becomes quite
streamlined and enables rapid development studies as well as long-term maintenance at the
block diagram level. Control system changes can be made to block diagrams on the host and
tested on the target system in a matter of hours.

This project concentrated on steps 5 and 6 to study the impacts of a specific target, and its fault
tolerant aspects, on the autocoding process. The goal was to understand the minimum changes
required to achieve target executable code. Section 2.2 describes the work performed in this
area.

2.2 Digital Autopilot (DAP) on Fault Tolerant System

Standalone Test Objectives. The specific objectives for this task were:

- Verify con-ect DAP autocode execution on fault tolerant target system
and identify compatibility issues between autocode and fault tolerance

- Verify and measure timing aspects of DAP execution including
- Deterministic execution across redundant channels

- Execution time of DAP, scheduler, and I/O functions on target system
- Verify and document memory useage on target system

- Measure and document processes and their flow-times

Standalone Test Environment. The standalone test environment, shown in figure 2.2-1,

consists of a host Sun workstation and the Boeing quad redundant target controllers 2. Not
shown in the figure are a Boeing fault injection system and a logic analyzer for gathering
instrumentation data. The Sun is used for developing the Shuttle DAP software and the input
data to be used for real-time execution on the target. The fault tolerant target contains four
replications of 1) a 32-bit reduced instruction set computer (RISC) that consists of a R3000
CPU, R3010 floating-point accelerator, 16 MBytes of global main memory accessible over a

2 Detailed descriptions of the equipment can be found in appendix A.
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standard VME bus, and 128KBytes each of instruction and data cache; and 2) a
Synchronizationand Voter Module (SVM). The R3000 is used for executing the DAP
softwarein real-timeandtheSVM isusedfor maintainingredundantchannelsynchronization
andfor voting all inputsandoutputsto theR3000processor.

Input Pool / Time Pool
Ethernet

Download

TARGET
AVIONICS SYSTEM CONTROLLER

(ASC)

16MB_ "y

Non-voted Interchannel

Inpool Network to Redundant ASCs

(1M)

DAP Executable

Output Pool

Host Simulation

Output Pool

1.2 MB File

\ ,
Outputp_l I

R3000/R3010Target CPU

Ethernet

Upload

Voted

Inpool

)(2o000

Non-voted

Oulpool

Voted

Outpool
(1M)

lxE0000o

Time Pool,

Y'T'ime Pool,

Frame Timing Reference

Voter
Module

Figure 2.2-1 Standalone Testing Environment

Standalone Test Description. As shown in figuire 2.2-1, in order to execute the DAP on
the targe t an input pool, timing pool, and executable module were downloaded from the host to
the target prior to execution. At run-time the pools resided in global memory and the DAP
executed in real-time "standalone" mode. Standalone means that I/O data transfers for the DAP

were performed, locally, within the target computer. All data transfers normally required to
move data into and out of the R3000 processor were pea'formed, including all voting functions.
However, in standalone mode the end steps of moving data into and out of an actual I/O device
(e.g. 1553 bus module) were replaced with transfers to and from global memory space within

the target system. This is shown with the global memory map 3 and the data flow arrows of
figure 2.2-1. In this way, all input and output for a two and one-half minute simulation run
were stored in controller memory and made available for post-run analysis and verification.
After program execution, the newly g_nerated voted output pool was uploaded to the host, then
compared (bit-for-bit) with a previously generated host simulation output pool to assure valid
target execution (see section 2.1-1).

3A complete memory map can be found in appendix C.
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Figures 2.2-2 and 2.2-3 show timelinesfor real-time executionof the standalonetest. As
shown,the standalonetest scenarioconsistedof two phases:an initialization phaseand an
ascentphase.Thefollowing paragraphsdescribethetiming of activityduring thesephases.

Theinitialization phaseoccurredasthefirst cycle on the SVM and prior to any cycles on the
R3000. During this phase the autocode scheduler (executing on the R3000) idled, waiting for
cycle, or frame, interrupts. The SVM retrieved the first frame's input data from the non-voted
inpool, voted that data and stored it in the voted inpool. This enabled the DAP software to start
execution of the ascent phase on the next cycle with input data in its buffers.

Following initialization, the ascent phase ran for two and one-half minutes. In order to run in
real-time the SVM generated and supplied to the R3000 a minor cycle timing reference with a

period of 40 ms 45. On a frame-by-frame basis the SVM retrieved DAP required input data
(19 32-bit values) from the non-voted inpool, voted the data and placed it in the voted inpool.
Also, the SVM retrieved DAP generated output data (19 32-bit values) from the non-voted
outpool, voted the data and placed it in the voted outpool. The autocoded software executed on
the R3000 and each frame it retrieved inputs from the voted inpool, scheduled task execution
for the current frame, placed outputs from the previous frame of task execution in the non-
voted outpool, and dispatched and executed the DAP control software as a single task. After
the DAP task ran to completion the scheduler resumed execution and waited for the next frame
interrupt.

After the mission completed the voted outpool was uploaded to the host (Sun) over ethernet

and compared to the host simulation output pool.

Frame I I + 1

Proce.slng I I I
Module 25 mSec. 50 nl_i¢. 75 mSec. 100 mSec.

Synchronization

& Voting
Module 25_. 50 mSec. 75_. 100 n_SeC.

Y = Get next frames Inputs from the Non-voted INPOOL, & Vote
Z = Place voted data In the Voted INPOOL

Figure 252-2 Initialization Frame Timing

4The cycle t_me as well as the timing of data transfers on the SVM are determined from an ASCII mission data

load file (loaded into the SVM prior to execution). This file can be easily changed to accomodate different

scenarios and cycle times.

5The SVM ensures that this reference is synchronized with the redundant channels' reference so that the DAP

executes synchronously across channels.
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Frame

R3000

Processlng
Module

Synchronization

& Voting
Module

I+1

10 mSec. 20 mSec. 30 mSec. 40 mSec.

10 mSec. 20 mSec. 30 mSec. 40 mSec.

A = Loads Input from voted INPOOL
B = Schedule Tasks

C = Post outputs to the Non-voted OUTPOOL

D = Application
W = Get outputs from the Non-voted OUTPOOL, & Vote
X = Put voted data In the Voted OUTPOOL

Y = Get next frames Inputs from the Non-voted INPOOL, & Vote
Z = Place voted data In the Voted INPOOL

Figure 2.2-3 Ascent Frame Timing

Conclusions / Lessons Learned. In summary, the autocode derived DAP software
executed on the fault tolerant system as expected and the outputs were verified as correct
against a host simulation generated output file. The following paragraphs describe key
conclusions/lessons learned during the course of the standalone tests.

Autocode and Fault Tolerance Compatibility. Overall, the fault tolerant target required
no special modifications to the autocode process. The hand modifications made to the autocode
generated software would be required to execute it on any particular target. The modifications
that were made to the autocoded software fall under three headings:

.

2.

.

Modifications to supply a timing reference to the task scheduler
Modifications to move input/output between internal data structure and
global I/O buffers.
Modifications to enable instrumentation of software execution.

The timing reference modification was made in the main task scheduler program and took form
as a polling function (see appendix D). The preferred implementation for this modification
would be as a true processor interrupt to the background function in the utilities file. The
vendor supplied O/S and debug tools did not easily accomodate handling of more than one
backplane interrupt. Given the tight schedule of this contract polling was implemented as a
temporary alternate solution. Future studies will modify the polling implementation to a true
hardware interrupt implementation.

The second modification above was needed to enable the transfer of information from the

application software internal data structures to the target specific I/O buffers. These
modifications take form, primarily, as address mappings. These changes were very
straightforward. It took less than one week to define and put in-place a simple mapping
structure. Additionally, an improved mapping structure was def'med and tested during the latter
stages of the lab testing. The improved version was viewed as more memory efficient as well
as more amenable to standardization. The simple mapping structure uses large arrays to store
I/O of entire simulations while the newer version uses a simple mail box scheme that fills a

Page 12



singlesmall array in real-time. Themail box schemearraysareonly as largeasonecycle's
worthof data.

Again, theabovemodificationswouldberequiredto get theautocodeto run onany target. It
shouldbe notedhere that, for theBoeing target,one of the target-specificbuffers was for
voting internal stateinformation (e.g. navigation statedata). However, this buffer was
specifiedjust asany I/O bufferwouldbedeclared.

It wasnotedby the teamthatcertainattributesof thesystemdon't currently showup in the
block diagramlevel specifications.Theseattributesincludelatencyandjitter requirementsof
key dataobjectsaswell ascertainredundancymanagement(RM) aspects.The Boeingtarget
intentionally keepsRM transparentto theapplicationsoftware. Teammembersexpresseda
concernthatcertainparametersmight want to bemadeavailableto theapplicationsuchas:
minimumredundancylevels,statuson resourceexhaustion,error strikecount thresholdsthat
determinewhenresourcesarereconfigured,andexecutionrateof RM logic. It wasnotedthat
the implementationsmaybetargetspecificbut that specificationof thekey parametersshould
possiblybemadeavailableat theblock diagramlevelof theprocessdepictedin figure 2.1-1.
Futurestudieswill determinehowbestto approachtheseareas.

Onemanualstepnot shownin theprocessflow of figure 2.1-1 is thegenerationof theSVM
missionf'dethat specifiescycle timing, datatransfertimes,andphaseschedulesto theSVM.
This is anASCII file that is easilychanged.Nevertheless,it representsanareathat may be
streamlinedby incorporationinto theautomaticdevelopmentprocess.Boeinghaspreviously
developeda pictorial / tabular interface for creation of this file. Future studies will determine
how best to incorporate this aspect into the overall development process.

Autocode for Time Critical Embedded Systems. Keys to enabling the use of autocode
techniques are the emerging throughput and memory size capabilities of today's processing
cards. The generation of Ada autocode from block diagrams results in larger, less efficient
code. Previous processor and memory technology would not be able to store the programs as
generated much less execute them in real-time. Approximate R3000 memory utilization for this
experiment is shown in appendix C and key block sizes are repeated here:

- Executable file containing DAP, scheduler,
external I/O

- Vendor supplied O/S using standard Ada
tasking libraries and services

- Target PROM Start-Up
-Ethernet Debug Monitor Code
- Standalone simulation inputs file
- Standalone simulation outputs fde
- t-ICap/Stack spac_

TOTAL

300KByte

105KByte

<100KByte
150KByte
1.8MByte
1.8MByte
> 4Ml3yte
> 8MByte

These numbers are approximate but give a good feel for the amount of memory needed to
enable a rapid prototype and development environment. Arguments can be made that the
standalone I/O arrays are not true requirements for flight and that the heap space could be
compressed considerably. However, the application for this experiment (--300K) represents
only a fraction of the functionality needed for actual flight. A minimum requirement might be
set at 4 MBytes while a safe requirement might be set at greater than 8 MBytes.

In terms of execution time, the DAP control software executed in approximately 500 Its on the
R3000/R3010 CPU. At certain mission times the execution time was observed at

approximately 1 ms. This variance was expected by NASA personnel and attributed to various
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eventsthatoccurduring Shuttle ascent. Detailed questions about the application can be directed
to NASA EG personnel.

One aspect of the autocoded software that needs future consideration is the fact that all outputs
from completed periodic tasks are delayed by up to a minor frame's worth of time before being
transferred from internal data structure to external I/O buffers. This introduces undesired

latency into the information flow. A number of ways to solve this problem exist and are being
studied which include:

- Specify a higher frequency of execution to the scheduler--this may be
viable due to the reserve throughput capability on the target

- Develop a user code block that takes outputs and posts them externally
immediately upon task completion

Finally, for this project, the DAP was only developed as single task running at 25 Hz. The
DAP should be broken up and executed as it really executes on the Shuttle--as a series of
multi-rate tasks. An issue with the autocode scheduler is that for multi-rate tasks, all I/O for all

tasks are performed every minor frame. This represents a large amount of unnecessary
overhead. Future studies will address this issue.

Process Improvement. Overall, the process--although still in need of refinements--looks
very promising. The lab development schedule moved along at a very quick pace as shown in
figure 2.2-4.

Tasks Week 1 Week 2

Installation

Development tools
and environment

Standalone
tests

Closed-loop
preparation

NASA personnel
training & demos

Week 3 Week 4 Week 5 Week 6 Week 7 Week 8

! !

DAP ExectXlon DAP _'rkl_ DAP Re_-Tirrm

on T=u'ga on Targel Multl-ottimnel

DAP Reid-Tkne

votingVO

Ftmot_md Te=t Re_-'r_ne

of tnierli=w Vq_ VO

Figure 2.2-4 Lab Testing Schedule

In summary, the keys to enabling the success illustrated include:
1. The ASC is built using processors and modules with interfaces that comply

to industry VME standards.
2. The ASC processor is supported by commercial software development tools,
3. The ASC fault tolerant architecture is designed to accomodate standard

modules.

4. The throughput capability and memory size of the ASC target enabled the use of
autocoding techniques. And,

5. The use of autocoding to generate the scheduler as well as application tasks.
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Examinationof theflow timesin figure 2.2-4showsthetwo segmentsof time with greatest
durationwere 1) thetimefrom nominalDAP executionto DAP executionin real-time;and2)
thetimefrom DAP real-timeto DAP with voting of I/O. The largestcontributorof flow time
associatedwith (1) wastheattemptatusingbackplaneinterruptsto generatetiming while also
usingthedebugmonitor--which requiredbackplaneinterruptsaswell. Thevendorsupplied
interrupttablesandserviceswerenotdirectlycompatiblewith multiplebackplaneinterruptsand
this aspectcaused2 to 3 weeksof delay. It shouldbe notedthat once analternatepolling
approachwasadoptedreal-timeexecutionwasachievedin aboutonedayof flow time. This
arearepresentsan implementationdetail that,onceaddressed,shouldnot recur. The largest
contributorof flow time with (2) wasalsorelatedto thedebugmonitor. The debugmonitor
links the host to thetargetvia ethernet. When theethernetlink remainsa public (versusa
private) link, the target debugmonitor hardwaregeneratesexcessiveinterrupts at non-
deterministictimesto theR3000,thuscausinglargeexecutionskewsanddeadlineoverruns.
Thenatureof thisproblemis alsothatof aone-timeoccurrance.Solutionsinvolveeitherof a)
runningwithout thedebugtoolsinstalledfor real-timetests,or b) switch thehost-to-targetlink
to aprivatelink.

Elimination of thesepathfinding type problemswill result in a processthat probably only
requiresfrom lessthantwo daysto amaximumof oneweekto movefrom applicationchanges
at the block diagram level to standalonefault toleranttargetexecutiontests. This kind of
schedulecompressionwould representasignificantlynewwayof doingbusiness.
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2.3 Closed-Loop Preparation / 1553 Integration

In closed-loop operations, the Boeing fault tolerant controller will interface with the JAEL
simulation environment over MIL-STD-1553B data buses. This is shown in figure 2.3-1.

Subtask 3.2.2 Test Configuration Elements

I F.o,,nj..,o°]

_, I sy_=_ I/pc I ,--_ ..........

Avionics System Computer
- GN&C Software

- Fault Handling

Closed-Loop Simulation Equipment

Interface Element

- Patch Panels

Flight System
Element

JAEL supplied equipment

I _ =hlmulatlon Element

I_ VAX 8800Boeing equipment aS needed - VME FWD & AFt

i(TBD) Racks

D i ....... ..............
,p Simulation Equipment

Ix Ada Software
Development System

Displays using Datavlews
Figure 2 3-1 Closed-Loop Simulation Environment

In order to prepare for the 1553 data bus system operations in the JAEL the objectives of this
task were to:

- Link the Boeing target with a single subsystem via a MIL-STD-1553B data bus
- Verify real-time communications with the subsystem using known data pools
- Execute the DAP in real-time, while receiving inputs from the remote subsystem

and sending command outputs to the remote subsystem. All I/O shall be voted
by the SVM in real-time.

Figure 2.3-1 shows the test environment for 1553B communications in real-time. For this test
a 386 based PC was used as a remote subsystem. Before run-time, the inpool was loaded
from disk to the PC memory in the remote subsystem; the outpool was loaded from the Sun
into global memory space on the Boeing target. During run-time the simulation ran for two and
one-half minutes using 40 millisecond minor cycles in the Boeing target. Each frame the
inpool was requested from the subsystem remote terminal (RT), voted, and placed inglobal
memory space. Additionally, the outpool was retrieved from global memory space, voted, and
sent from the Boeing 1553 bus controller (BC) to the RT. At the conclusion of the test two
steps were performed to verify proper operation. First, at the Sun the inpool that had been
received via 1553 was uploaded and compared to a host version of the inpool. Second, at the
remote subsystem (PC) the outpool that had been sent via 1553 was compared to a host version
of the outpool.
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Results. The results from the two comparisons were that both the voted inpool at the Boeing

target and the 1553 outpool at the PC were bit-for-bit identical with their respective data files.
This represented a key stepping stone in preparation for closed-loop testing.

It should be noted that, for this test, the R3000 CPU remained idle. NASA personnel will
continue to work the next step of the integration process--running the DAP on the R3000
while performing remote I/O with the PC based subsystem. Due to the success of the test
described here, the fact that it was done in real-time, and the results of the standalone DAP
testing, the team expects quick success for the final integration step of the DAP.
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3. 1994 PLANS

In 1994 the NASA /Boeing team will continue to work jointly on the rapid prototyping process
definition as well as the standard interface requirements that the process demands. Testing of

the process will expand to include areas beyond flight control including, vehicle health
monitoring (VHM), guidance, navigation, mission sequencing, and communications.
Additionally, testing will move to a new level of fidelity in the JAEL closed-loop simulations.

The statement of work (SOW) for 1994 is available upon request and outlines the tasks to be

performed during the next year.
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APPENDIX A Equipment Descriptions

The Avionics System Computer (ASC) is a modular, redundant system that contains a 32-bit

processor module (PM); a synchronization and voter module (SVM), and a 1553B data bus
interface module (BIM) in each of its four redundant channels. Figure A1 shows the interfaces
between a prototype computer and the simulation system and fault injection system. In all, there are
four separate prototype computers in four separate boxes.

Fault Injection
System

__Fault Injection ]IEEI Controller
488

_ HP LogicAnalyzer

_ 28Vdc PowerSupplies

Typical of each ASC Prototype

Interchannel
Harness

Ethemet

RS-232

rest

Bus Analyzer
Output

Processor Module

Sync & Voter Module

Backplane Analyzer
(Installed in Channel A Only)

1553B Bus Module

Box Power Su

System
Clock
Discrete

Simulation

System

Figure A1. ASC Proto__pe & Interfaces.

ASC Prototype Software Overview

The ASC modularity has been carefully partitioned so that the application programmer is presented
with the simplest possible view of the processor. First, redundancy management of the ASC's
themselves are handled by the SVM logic. Second, application tasks communicate using a simple
mailbox scheme that operates directly out of local memory.

(Application software here refers to such things as Guidance, Navigation, Flight Controls,
Propulsion Controls, etc.)

The application software resides on the R3000 PM. The software is run using a simple rate
monotonic scheduling approach. A 40ms minor frame defines the base frequency of the system.

Timing interrupts, input/output, and redundancy management, however, are provided by the SVM.
The SVM provides identical (voted) inputs to the processors and votes the resulting output
commands. This avoids channel specific application software paths which greatly simplifies the
code and associated testing/debugging.

The Ada application software is combined with an R3000 Ada kernel which provides the interfaces
to the processor board, including interrupts. For the JSC autocode tests software functions are
executed based on the 40 millisecond minor frame.

Application software development efforts are supported using a Verdix Ada software development
system.

R3000 Processor Module

Page 19



Theprocessormoduleis basedon theMIPS Inc.32-bit R3000ReducedInstructionSetComputer.
The modulecontainsanR3000CPU, R3010floating point coprocessor,16megabytesof main
memory, 128kilobytes of instructioncachememory, 128kilobytes of datacachememory,512
kilobytesof bootPROM,and128kilobytesof EEPROM. Theoperatingfrequencyof themoduleis
25MHz andit deliversup to 20VAX equivalentMIPsof computingpower. The R3000moduleis
usedto executeguidance,navigation,flight andpropulsioncontrolapplicationsoftware.

Synchronization & Voter Module

The synchronization and voter module (SVM) houses Boeing's advanced technology for performing
fault tolerant hardware voting functions. The module contains an Intel 80386 processor, 8
megabytes of main memory, and the synchronization & voter circuits that interface with redundant
ASCs to perform clock synchronization and data voting. The module is used by the ASC to perform
ASC redundancy management.

1553B Data Bus Module

This module provides a full function, slave interface between the MIL-STD-1553B bus and the ASC
computer system. The interface to the ASC is mechanized through 64 kilowords of RAM memory.
The RAM is partitioned into control register storage, data buffers, and control block lists. Control
block lists enable the module to perform multiple 1553B transactions without host ASC intervention.
The module will be used in Bus Controller mode to manage 1553B bus traffic.

lnterchannel Wire Harness

The interchannel wire harness is used to connect ASC units into redundant configurations. The
harness contains point-to-point interconnects that SVMs use to share information during
synchronization and voting operations.

Fault Injection System Overview

The fault injection system is a tool for testing the redundancy management circuits and logic of the
ASC. Faults will be modeled as errors at the fault containment region boundary, and errors will be
injected between fault containment regions. The types of faults to be modeled will be: single
permanent physical, single transient physical, Byzantine, non/near coincidental, timing and
synchronization, and power. Figure A2 shows the Fault Injection System and its interface to the
ASCs.

Fault Injection System Software

The fault injection system will be setup through menu selections prior to running a mission or
experiment. Also, faults can be injected "on-the-fly" for demonstration purposes. As the
experiment is running, a fault will be injected at a precise time as programmed during setup.
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Figure ,42. Fault Injection System Configuration

Fa_l_ Injection System Hardware

The fault injection system is a VME based system containing: a Radisys 386 PC computer with a
VGA monitor, an IEEE 488 controller, an ethernet controller, and four Boeing Fault Injection
Modules. The four Fault Injection Modules are plugged in-line with the interchannel cable (see
figure A2). This approach is non-obtrusive with the flight computer in normal operation, and can
inject faults at precise times.

Page 21



APPENDIX B DAP Standalone SimulationmIntegration Notes

Step 1 was for the target application to perform within a 'for loop'. The for loop substituted
the real-time mechanism (frame interrupts) which would be generated by the Sync. & voter
module (VME timing interrupt) in a later step. In this mode, the R3000 target executes
independently of frame interrupts and voting. The R3000 got the inputs from the Non-voted
inpool, and placed the outputs in the voted Outpool. After the mission/application has
completed, the Voted Outpool was uploaded thru the ethernet link for comparison with the
simulation output pool. The results from this step were that the R3000 repeatedly placed
outputs in the Voted Outpool that matched bit-for-bit with the simulated Output pool on the Sun
workstation.

Step 2 was to remove the 'for loop' from the R3000 application and have the Sync. & voter
module generate frame interrupts (VME interrupt #7). Therefore, the software running on the
R3000 would perform an executive / scheduler and application (DAP) in real-time with respect
to 40m sec. frames. Due to certain limitations within the Verdix kernel and Embedded Target

Debug Monitor (ETDM), we were unable to quickly attach VME interrupts to the kernel. Faced
with schedule constraints, it was decided to investigate interrupts at a later date and implement

an alternative approach (frame flags) explained in the next step.

Step 3 was to replace VME interrupts with 'frame flags'. Simply put, the R3000 would poll a
specific address in global memory. The SVM (sync. & Voting Module) would set that address
at the beginning of the minor frame (40m sec.). The R3000 would see that address (frame flag)
set, it would clear the frame flag, then execute the DAP. Note: this step does not involve the
voting of inputs or outputs. The inputs are loaded (prior to execution) in the voted inpool from
the Sun, and the outputs from the DAP are placed in the voted outpool. After the
mission/application has completed, the Voted Outpool was uploaded thru the ethernet link for
comparison with the simulation output pool. The results from this step were that the R3000
repeatedly placed outputs in the Voted Outpool that matched bit-for-bit with the simulated
Output pool on the Sun workstation.

Step 4 was to implement voting of the inputs and outputs in real-time as outlined in the real-
time execution section. As shown in the open loop environment figure (fig. 2.2.2-1), the
inpool is downloaded (over ethemet) to the Non-voted inlx>ol. On a frame by frame basis, the
SVM will vote the non-voted inpool and place the voted inputs into the voted inpool. The DAP
will get each frames inputs from this pool, execute and load outputs to the non-voted outpool.
The SVM will vote the non-voted outpool and place the voted outputs into the voted outpool.
Upon completion of execution, the voted outpool was uploaded to the sun for comparison with
the verified output fde.
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APPENDIX MapC Standalone Testing Memory
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APPENDIX D Autocoded Main Program with Scheduler

Available on request.
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Availableon request.

APPENDIX E SA Utilities Ada Module
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Availableonrequest.

APPENDIX F SVM Mission Tables
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